Aktuális hírek

 



2022 Január | Február | Március | Április | Május | Június | Július | Augusztus | Szeptember | Október | November | December




Hasonlóságok az alligátorok párzási hívása és a Nap égi tánca között

A Nap látható felszíne és a forró koronája között megfigyelhető anyagkilövellések régóta fejtörést okoznak a kutatóknak. Tudósok egy csoportja nemrég folyadékoldatok rezegtetésével szimulált hasonló jelenséget, és ezzel elsőként mutatta meg, hogyan keletkezhetnek a kozmikus energiaszállításban feltehetően nagy szerepet játszó szpikulák. A felismert áramlási mechanizmus a természet sok más csodálatos jelenségének is a motorja.

.

A sugárszerű anyagkilövellés (jet) rendkívül gyakori a természetben. Egyik vizuálisan legtetszetősebb példája a hím alligátorok párzási viselkedése során jelenik meg: amikor az aligátor épphogy a vízfelszín alá meríti nyakát, mély, basszus tartománybeli frekvenciákon hangos morgást hallat, aminek hatására vízsugarak kezdenek gyönyörű táncba a tó felszínén. A jelenségért felelős fizikai mechanizmus a Faraday-gerjesztés, amelyet először 1831-ben Michael Faraday angol fizikus demonstrált sekély folyadékban egy rugalmas membrán segítségével. Tőlünk 150 millió km-re központi csillagunk, a Nap felszínén szintén megfigyelhető hasonló anyagkilövellés az anyag negyedik halmazállapotaként is emlegetett szuperforró plazmában. A szoláris szpikulákat régóta vizsgálják a tudósok, de keletkezésüket – a szerelmes hím alligátorok násztánca által keltett sugárkilövellésekkel ellentétben – még nem sikerült teljes mértékben megmagyarázni. A témában írt korábbi cikkünk itt olvasható.

Magyar, indiai és brit tudósok egy csoportja azonban nemrég különösen izgalmas kísérletet végzett a rejtély felderítésére. A csillagászok polimerfizikusokat hívtak segítségül, hogy laboratóriumi körülmények között vizsgálhassák a jelenséget. Egy elfektetett, bekapcsolt hangszóróra folyadékoldatot öntöttek, amely a rezgés hatására függőleges jeteket lövellt ki. A polimerfolyadékok speciális tulajdonsága, hogy alkotóelemeik összekapcsolódnak egy kitüntetett irányban – éppen úgy, mint ahogy a Nap plazmáját alkotó elemek is sugarakba rendeződnek a mágneses tér mentén. A hangszóróra azért volt szükség, mert a tudósok így tudták szimulálni a Nap felszínre merőleges rezgését (a globális szoláris oszcillációt).

A kísérlettel a Piyali Chatterjee (Indiai Asztrofizikai Intézet / Bengaluru) és Erdélyi Róbert (ELTE Csillagászati Tanszék / Sheffieldi Egyetem) által vezetett nemzetközi tudóscsoport első ízben bizonyította, hogy a napszpikulák keletkezését és nagy számát egy régről ismert, egyszerű mechanizmus, a konvekció okozhatja.


A mechanizmus – ahhoz hasonlóan, ahogy melegítés közben az edényben forr a víz – nagyjából periodikus, igen erős lökéseket gyakorol a plazmára a napfelszín (a fotoszféra) fölött elhelyezkedő vékony rétegben, vagyis a kromoszférában. (Alkalmas eszköz nélkül ezért sose nézzünk a Napba!) A kromoszféra anyaga kb. 500-szor könnyebb, mint a fotoszféráé, ami azt jelenti, hogy ezek a konvekciós mozgás által generált, alulról érkező erős lökések a kromoszférikus plazmát hosszúkás, 300–1000 km széles és 5000–30000 km magas, henger alakú jetek formájában lövik ki.

A Nap atmoszférájában sok, különféle magasságú és sebességű szpikulát látnak a tudósok, és éppen ez a sokféleség nehezíti a kialakulásuk megértését. A polimerfolyadék-kísérlettel azonban a kutatócsoportnak sikerült azt is megmutatnia, hogy a Nap konvekciója önmagában is sokféle különböző anyagkiáramlást képes kialakítani. Amikor ugyanis kilövellés közben a konvekcó által gerjesztett hullámok amplitúdója túlságosan megnő, nemlinearis hullámtörés keletkezik. Ezt a jelenséget máshol is megfigyelhetjük, például az óceánok nagy hullámmozgásaiban vagy a galaxisok spirálkarjaiban.

“A kutatás során közvetlen bizonyítékot kerestünk arra, hogyan lehet jelen mintegy 3 millió szpikula egyszerre a Nap felszínén, és a polimer folyadékok fizikájába nyújtott egyedi bepillantás valóban alapvető felfedezést tett lehetővé – mondja Erdélyi Róbert csillagászprofesszor. – A közös munka során rengeteget tanultunk egymástól. Nemcsak Piyali Chatterjee polimer folyadékokat kutató csapatától, hanem a pályafutásuk elején járó fiataloktól, Sahel Dey PhD-hallgatótól, valamint Korsós B. Marianna, Jiajia Liu és Chris Nelson posztdoktori kutatóktól is."

„Örülök, hogy fiatal kutatóként része lehettem az együttműködésnek, és láthattam, ahogy két, látszólag különböző kutatási terület együttes erővel egyszerű magyarázatot talál egy régóta nyitott tudományos kérdésre – nyilatkozza Korsós B. Marianna, aki nemcsak tudományos munkatárs az ELTE Csillagászati Tanszékén, hanem egyben az Aberystwythi Egyetem Fizika Tanszékének Naprendszerfizikai Csoportjában is posztdoktori kutatóasszisztens. – Immár erősen hiszem, hogy a különböző kutatási területeknek közös projekteken kell dolgozniuk, mert ez nagy ugrásokkal viheti előre a tudományt.”

A kutatás azért is számít rendkívül fontosnak a szakterületen, mert a szpikulák nagy száma miatt a kutatók feltételezik, hogy a plazmakilövellések kulcsszerepet játszanak a Naprendszer tömeg- és energiaszállításban. Ennek mikéntjére azonban a modern plazma-asztrofizika még nem talált magyarázatot. Mi tartja fenn a napszelet? És hogyan melegszik fel a napkorona több millió Kelvin fokos hőmérsékletre? Ehhez hasonló kérdésekre keresik a tudósok jelenleg is a választ. A témáról az alábbi cikkünkben olvashat bővebben.

A kutatás az ELTE-n a Felsőoktatási Intézményi Kiválósági Program (FIKP) asztro- és részecskefizikai tématerületének keretében zajlik, Frei Zsolt vezetésével. A csoport magyar tagjai az IRIS űreszköz által készített megfigyelések adatainak elemzéséhez és annak elméleti értelmezéséhez járultak hozzá szakértelmükkel, fejlett feldolgozási technikákat használva az adatelemzéshez.

Az eredményeket összegző tanulmány 2022. március 3-án jelent meg a Nature Physics lapban, és a SharedIt-en is olvasható.


Erdei Attiláné (Julika) lett Békés megye legjobb könyvelője!

Gratulálunk Erdei Attilánénak (Julika) a megtisztelő címhez! További sok sikert és jó munkát kívánunk! Egyúttal köszönjük a mérhetetlen sok segítséget, amivel hozzájárult a Napfizikai Alapítvány sikereihez!

.


"Polymeric jets throw light on the origin and nature of the forest of solar spicules" has been published online in Nature Physics

Jet-like behaviour is extremely common in nature. One of the most visually appealing examples occurs during the mating display of the male alligator, when the alligator submerges its neck just below the water-line and bellows at bass frequencies, causing jets of water to dance in a beautiful display on the lake surface. The physical mechanism responsible for this effect is known as Faraday excitation and was first demonstrated in a shallow fluid with an elastic membrane by English physicist, Michael Faraday in 1831. Far away on the Sun’s surface, a similar display of jet-like behaviour is ubiquitously observed in the super-hot plasma, also called the fourth state of matter, in the form of ‘spicules’. However, unlike with the jets caused by the amorous male alligator, spicules are yet to be fully explained.

To make progress towards fully understanding solar spicules, a team of researchers from Hungary, India and UK, including Prof Robertus Erdélyi and Dr Marianna B Korsós (Dept. of Astronomy, Eötvös University and also at Hungarian Solar Physics Foundation, Gyula, Hungary, http://hspf.eu) have found an intriguing connection between fluid solutions vibrating on a speaker displaced horizontally and the forest of vertically elongated plasma jets known as spicules on the Sun’s surface. Father Secchi originally discovered spicules in 1872. However, they remain one of those miscellaneous objects in modern plasma-astrophysics.

The first author of the paper, Mr. Sahel Dey, is a final year PhD student at Indian Institute of Astrophysics and IISc, Bengaluru. The team was led by Indian researchers, Dr Piyali Chatterjee on solar plasma simulations and Dr Murthy O. V. S. N. from Azim Premji University on the laboratory experiments. The team from Hungary and the UK worked on data analysis from observations taken by the IRIS spacecraft and contributed advanced processing techniques included Drs Jiajia Liu and Chris Nelson from the Queen’s University Belfast.

Link to the paper: HERE

Link to the video: HERE


Az első, a teljes napkorongról készült felvétel az új MOF távcsövünkkel.

A Durham Team (Tim, Tim, Dani, Joss és Juergen) nagy erőfeszítéseinek köszönhetően.

.


Hatalmas napkitörés kapott lencsevégre a Solar Orbiter (space.com)

The ESA/NASA Solar Orbiter spacecraft has captured the largest solar prominence eruption ever observed in a single image together with the full solar disc.

(Forrás: Solar Ham).

Solar prominences are large structures of tangled magnetic field lines that keep dense concentrations of solar plasma suspended above the Sun’s surface, sometimes taking the form of arching loops. They are often associated with coronal mass ejections, which if directed towards Earth, can wreak havoc with our technology and everyday lives.

This latest event took place on 15 February and extended millions of kilometres into space. The coronal mass ejection was not directed at Earth. In fact, it is travelling away from us. There is no signature of the eruption on the solar disc facing the spacecraft – which is currently approaching the Earth-Sun line – meaning that it must have originated from the side of the Sun facing away from us.

The imagery was captured by the ‘Full Sun Imager’ (FSI) of the Extreme Ultraviolet Imager (EUI) on Solar Orbiter. FSI is designed to look at the full solar disc even during close passages of the Sun, such as during the upcoming perihelion passage next month. At closest approach on 26 March, which will see the spacecraft pass within about 0.3 times the Sun-Earth distance, the Sun will fill a much larger portion of the telescope’s field of view. Right now, there is still a lot of ‘viewing margin’ around the disc, enabling stunning detail to be captured by FSI out to about 3.5 million kilometres, equivalent to five times the radius of the Sun.


Solar Orbiter and SOHO’s view of a giant eruption - side by side

Other space telescopes such as the ESA/NASA SOHO satellite frequently see solar activity like this, but either closer to the Sun, or further out by means of an occulter, which blocks out the glare of the Sun’s disc to enable detailed imagery of the corona itself. Thus, the prominence observed by Solar Orbiter is the largest ever event of its kind to be captured in a single field of view together with the solar disc, opening up new possibilities to see how events like these connect to the solar disc for the first time. At the same time, SOHO can provide complementary views to even larger distances.


Solar Orbiter and SOHO’s view of a giant eruption – wide view

Other space missions were also watching the event, including NASA’s Parker Solar Probe. Next week, Solar Orbiter and Parker Solar Probe will perform dedicated joint observations during Parker’s perihelion passage.

Even spacecraft not dedicated to solar science felt its blast – the ESA/JAXA BepiColombo mission, currently in the vicinity of Mercury’s orbit – detected a massive increase in the readings for electrons, protons, and heavy ions with its radiation monitor.

And while this event did not send a blast of deadly particles towards Earth, it is an important reminder of the unpredictable nature of the Sun and the importance of understanding and monitoring its behaviour. Together with ESA’s future dedicated space weather mission Vigil, which will provide unique views of events like these, we can better protect our home planet from the Sun’s violent outbursts.


40 Starlink műholddal végzett a geomágneses vihar (space.com)

A műholdak február 3-án indultak. Egy nappal később geomágneses viharba kerültek.

2022. február 3-án egy SpaceX Falcon 9 rakéta 49 Starlink internetes műholdat bocsát pályára a NASA Kennedy Űrközpontjának 39A plattformjáról a floridai Cape Canaveralban. (Forrás: SpaceX).

A SpaceX 40 vadonatúj Starlink internetes műholdat veszít el egy geomágneses vihar miatt, amely mindössze egy nappal a flotta múlt heti kilövése után sújtott le.

Egy SpaceX Falcon 9 rakéta 49 Starlink műholdat indított el február 3-án a NASA floridai Kennedy Űrközpontjából. Egy nappal később a Föld felett egy geomágneses vihar kismértékben megnövelte a légkör sűrűségét, növelve a műholdak ellenállását, ezzel a műholdak nagyrészének a vesztét okozta.

"Az előzetes elemzések azt mutatják, hogy a kis magasságban megnövekedett légellenállás megakadályozta, hogy a műholdak kilépjenek biztonságos módból, hogy megkezdhessék a pályáraállási manővereket. A műholdak közül akár 40 is visszatérhet a Föld légkörébe, vagy már belépett" - írta a SpaceX február 8-án.

Az Egyesült Államok Nemzeti Óceán- és Légkörkutató Ügynöksége által üzemeltetett Űridőjárás-előrejelző Központ szerint geomágneses viharok akkor fordulnak elő, amikor a Föld közelében erős napszél váltakozó áramokat és plazmákat kelt a Föld magnetoszférájában. Ez a kölcsönhatás felmelegítheti a Föld felső légkörét, és megnövelheti a légkör sűrűségét elég magasan a bolygó felett ahhoz, hogy hatással legyen az alacsony pályán keringő műholdakra, például a SpaceX új Starlink műholdjaira. A pénteki geomágneses vihart a január 30-án észlelt napkitörés okozta, amely töltött részecskék hullámát küldte a Föld felé.

A felbocsátott 49 műhold kezdeti pályájának legalacsonyabb pontján 210 kilométerre siklott a Föld felett. A SpaceX azért állította a Starlink műholdakat alacsony pályára, hogy gyorsan megsemmisíthessék őket, ha közvetlenül az üzembeállítás után meghibásodnának. Kiderült, hogy ez a pályatervezés sebezhetővé tette a flottát a pénteki geomágneses viharral szemben.

"A fedélzeti GPS azt mutatta, hogy ahogy a vihar fokozódott, 50 százalékkal magasabb légellenállást eredményezett, mint a korábbi kilövéseknél" - írta frissítésében a SpaceX. A műholdakat ezután "biztonságos módba" helyezték, és utasították, hogy élükön repüljenek "mint egy papírlap", hogy minimálisra csökkentsék a légellenállást, miközben a vállalat az Egyesült Államok Űrhadosztályával és a LeoLabs céggel együttműködve nyomon követte őket a földi bázison - tette hozzá.

49 Starlink internetes műholdat mutatja kilövési pozícióban egymás mellett, mielőtt pályára állnának 2022. február 3-án. (Forrás: SpaceX).

Hiába az óvintézkedés, a legtöbb Starlink műholdnál túl nagy volt a légellenállás. Csökkentett módjukba zárva várhatóan 40 műhold űrtörmelékként zuhan le a pályáról néhány nappal a kilövés után.

"A pályájukat vesztett műholdak nem jelentenek kockázatot más műholdakra nézve, és úgy tervezték őket, hogy a légkörbe való visszatéréskor teljesen megsemmisülnek, vagyis nem keletkezik űrtörmelék, és egyetlen műholdrész sem éri el a felszínt" - írta a SpaceX a műholdak visszatéréséről. "Ez az egyedülálló helyzet jól mutatja, hogy a Starlink csapata milyen sokat tett annak biztosítása érdekében, hogy a rendszer az élvonalban legyen a pályán lévő törmelék csökkentésében."

A SpaceX 2019 óta indít Starlink műholdak Föld körüli pályákra, néha egyszerre akár 60-at is, hogy egy olyan megakonstellációt alkossanak, amely egy napon akár 42 000 műholdat is számlálhat. A projekt célja, hogy nagy sebességű internet-hozzáférést biztosítson az ügyfeleknek a Föld bármely pontján, különösen a távoli vagy rosszul kiszolgált területeken – közölte a SpaceX.

A Starlink projektet széles körben bírálják a csillagászok bírálták a csillagászati megfigyelésekre gyakorolt hatása miatt, mivel az éjszakai égbolton áthaladó műholdak nagy száma csíkokat hagyhat a távcsövek felvételein. Azóta a SpaceX azon dolgozik, hogy korlátozza Starlink műholdaik láthatóságát, hogy csökkentse a csillagásztársadalom nemtetszését.


Hogyan marad működőképes több millió Celsius-fokos környezetben a Parker napszonda? (raketa.hu)

A Nap koronájának rendkívül magas hőmérsékletét az alacsony részecskesűrűségű közeg nem közvetíti hatékonyan, többek között ez biztosítja a szonda túlélését. A Parker szonda működéséről, a napfizikai kutatásokkal és űridőjárással kapcsolatos jelentőségéről és egy lehetséges űrvihar hatásairól Erdélyi Róbert csillagásszal, a Magyar Napfizikai Alapítvány kuratóriumának elnökével beszélgettünk.


Minden eddiginél közelebb a Naphoz

Ahogy arról korábban beszámoltunk, a NASA Parker szondája (Parker Solar Probe) áprilisban minden eddiginél közelebb repült a Naphoz, és a mérések szerint sikerült átlépnie az Alfvén-felületnek nevezett határt, ahol már a mágneses erők határozzák meg a részecskék dinamikáját, vagy, ahogy a NASA közleményében is írják, itt ér véget a Nap légköre és kezdődik a napszél birodalma.

Ebben a kontextusban a légkör megfogalmazás némileg pontatlan, mivel, ahogy azt Erdélyi Róbert, a Sheffieldi Egyetem Napfizikai és Űrplazma Kutatóközpontjának vezetője, a Magyar Napfizikai Alapítvány kuratóriumának elnöke és az ELTE csillagászati professzora kérdésünkre elmondta, a Nap légköre valójában nem a korona határáig tart, maga a Föld is a Nap atmoszférájában kering, bár ahogy közelítünk a Naphoz a hőmérséklet természetesen egyre növekszik.


A Parker szonda nyolcadik repülése során elért, a Nap felszínétől (ami szintén nem egy jól körülhatárolható, szilárd felszínt jelent) 13 millió kilométeres távolságban lévő és a kilencedik repüléskor megközelített 10,5 millió kilométeres határ viszont így is a Naphoz legközelebb eső régió, amelyet valaha elért egy űreszköz, ezen a területen pedig rendkívül magas, akár több millió Celsius-fokos hőmérséklet uralkodik. Joggal merül fel a kérdés, hogy vajon hogyan képes egy szonda működőképes maradni ilyen extrém körülmények között, vagyis miért nem olvad el a Parker napszonda?

A magyarázatot egyrészt a szonda hőpajzsa adja meg, amelyről még szót ejtünk később, másrészt a hőátadás folyamatának működése, amely az űrbeli körülmények között, a részecskék nagyon alacsony sűrűsége miatt nem olyan hatékony, mint itt, a Földön.

Valójában mit jelent az, hogy valami több millió Celsius-fokos?

Ha veszek egy vasat és felforrósítom nagyon nagy hőmérsékletre, fájna, ha megérintenénk. Ha viszont valamilyen gázt melegítek magas hőmérsékletre, és a gáz elég ritka, akkor azzal egy pohár teát sem lehetne felmelegíteni" - magyarázta Erdélyi Róbert. "Ez a helyzet a Nap légkörében is. Ha közel megyünk a Naphoz, ott hiába több millió fokos a hőmérséklet, olyan kicsi a sűrűsége a légkörnek, hogy hőkapacitása nem nagyon van."

Ennek ellenére ez a környezet is alkalmas arra, hogy az űreszközt felmelegítse vagy akár kárt is okozzon benne, mivel a csillagból kiáramló rendkívüli sebességgel haladó részecskék, amelyeknek egyenként nagyon nagy az individuális energiája, a szondát elérve interakcióba lépnek annak atomjaival és tönkre is tehetik. Ennek a napszélnek elnevezett folyamatnak az elméletét egyébként a szonda névadója, Eugen Newman Parker asztrofizikus dolgozta ki az ötvenes években, miután kiszámította, hogy csak úgy lehet a Nap felszíne stabil, ha folyamatosan áramlik ki belőle az anyag.

A szonda speciális védelme

Ez ellen véd a szonda hőpajzsa, amely így csak ezer Celsius-fok közeli hőmérsékletet kell, hogy kibírjon, és, bár még ez is magasnak számít, de léteznek olyan anyagok, amelyek kellően strapabíróak és alkalmasak a feladatra. A 2,4 méter átmérőjű, 115 milliméter vastag hőpajzs (Thermal Protection System, TPS), amelyet a Johns Hopkins APL tervezett meg, két széntartalmú réteg között elhelyezett szén-kompozit habból áll, kívülről, a Nap felőli oldalán pedig fehér kerámia bevonat védi a napsugaraktól. A tesztek során az árnyékoló 1650 Celsius-fokos hőmérsékletnek is ellenállt, így kellő védelmet nyújt az alatta található eszközök számára.

A szonda egyetlen berendezése, amelyet nem takar le az árnyékoló, az a Faraday-pohár, amely az ionok és elektronok áramlását detektálja: ezt az eszközt viszont olyan magas olvadáspontú anyagokból készítették, amelyek akár 2000-3000 Celsius-fokos hőmérsékletet is elviselnek. Az érzékelő titán-cirkónium-molibdén ötvözetből készült, 2349 Celsius-fokos olvadásponttal, az elektromos kábelek pedig nióbiumból állnak, amelyeket zafírkristály nanocsövek takarnak. Ezenfelül a napelemes paneleket, amelyek a Nap közelében automatikusan behúzódnak az árnyékoló mögé, egy ioncserélt vízzel működő hűtőrendszer is hidegen tartja.


A Parker szonda áprilisi, nyolcadik repülésének nagy horderejét az adja, hogy most először sikerült elérni az Alfvén-felületet egy űreszközzel, de mi az esemény gyakorlati jelentősége, hogyan járulnak hozzá a Nap közvetlen közelében végzett megfigyelések a tudományos kutatásokhoz?

Az asztrofizika megoldatlan rejtélye

Erdélyi Róbert, aki nemzetközi kutatócsapatával a Nap fotoszférája és koronája közötti hőmérsékleti különbségek eredetét kutatja és két évvel ezelőtt áttörést ért el a plazmahullám-pulzusok észlelésével kapcsolatban, elmondta: a Parker műhold az eddiginél jóval több információt gyűjthet a mágneses térről és arról, hogy az milyen szerepet játszik a Nap légkörének melegítésében.

"A Nap felszíne "csak" öt-hat ezer Celsius-fokos, de ha bemegyünk a belsejébe, ott egyre melegebb lesz a fúziónak köszönhetően. Azonban a felszíntől távolodva is egyre növekszik a hőmérséklet, ami már kevésbé érthető jelenség." - mondta a professzor - "Úgy kell elképzelni, mintha otthon a forró radiátortól vagy kályhától távolodva egyre melegebbet érzékelnénk: ez látszólag ellentmond a termodinamika törvényeinek, de mégis ehhez hasonló folyamat zajlik a Nap felszínén. Az öt-hatezer Celsius-fok a felszíntől távolodva növekszik, bizonyos régiókban akár a harmincmillió fokos hőmérsékletet is elérheti. Ez a jelenség alapvető kérdése és megoldatlan rejtélye az asztrofizikának, aki ezt megoldja, az nagyon nagy lépést tesz a tudomány területén."

A felfedezésnek nem csak az asztrofizikában, hanem a gyakorlati életben, az energiaellátás megreformálásában is nagy jelentősége lehet, mivel a földi mini-csillagok, vagyis a fúziós reaktorok is a Napban megfigyelhető folyamatok alapján működnek. "A fúziós reaktorokban hidrogénizotóp atomok ütköznének össze, fuzionálnának és héliumatomok keletkeznének belőlük, eközben pedig energia szabadulna fel, mivel a héliumatomok tömege kevesebb, mint az eredeti hidrogénatomok tömege és ez a tömegkülönbözet átalakul energiává." - mondta Erdélyi. A fúziós módszerrel tiszta energia állítható elő erősen környezetkímélő módon, a folyamat közben ugyanis nem keletkeznek káros anyagok, amelyek a környezetet szennyezik, ellentétben a fosszilis üzemanyagokat felhasználó energiatermelési módokkal. Körülbelül száz gramm csapvízből és két és fél gramm lítiumból egy európai háztartás teljes generációjának energiaigényét el lehetne látni a fúziós technológiával.

Ha tudnánk, hogy a csillagok pontosan hogyan fűtik fel a légköreiket ilyen hatalmas hőmérsékletekre, ahol a fúziót be lehet indítani, elleshetnénk tőlük a módszert és átültethetnénk a gyakorlati életbe - tette hozzá a professzor.

Űridőjárás, űrvihar

A csillagász a Magyar Napfizikai Alapítvány kuratóriumának elnökeként az űridőjárás megfigyelésében is érdekelt, mivel a gyulai önkormányzat segítségével felépített és az alapítvány által működtetett Gyulai Bay Zoltán Napfizikai Obszervatóriumban, amely jelenleg Magyarország egyetlen napfizikai obszervatóriuma, többek között a napkitöréseket monitorozzák, hogy a földi elektromos rendszerekre veszélyes geomágneses viharok megjelenését minél hamarabb észlelhessék. Míg az 1859. szeptember 1-jén bekövetkező Carrington-esemény, amelyet az egyik, feljegyzésekkel is alátámasztott legnagyobb geomágneses viharként tartanak számon, csak néhány távírókészüléket (és kezelőiket) tette tönkre, addig a mai, mindent elektromos rendszerekkel behálózó világban sokkal komolyabb károk keletkezhetnének egy hasonló intenzitású esemény alkalmával. Az obszervatórium műszereinek segítségével azt próbálják megjósolni, hogy a következő hat-nyolc-tíz órában lehet-e számítani űrvihar kialakulására.


"Az űrviharok hatása a mai, technológiára épülő, földi civilizációra nézve nagyon nagy, ugyanis az űrvihar mikroáramokat gerjeszt, ezek a mikroáramok pedig kárt okoznak a chipekben, így a repülőktől kezdve a bankrendszerekig minden, ami chipekkel működik, gyakorlatilag tönkremehet." - mondta a professzor - "Eddig szerencsénk volt, hogy egy nagyobb űrvihar nem találta el a Földet az utóbbi időkben, de ha a Carrington-fler ma alakulna ki, akkor a becslések szerint akár kettőtől tíz évig nem lenne áram a Földnek azon régiójában, ahol magasan fejlett technikai infrastruktúrára épülő berendezkedés van."

Ezért próbálják meg előrejelezni az űrviharok megjelenését a földi obszervatóriumok megfigyelései által, és ebben segíthet a Parker szonda is, mivel az általa közvetített információk közelebb viszik a kutatókat a koronaanyag-kidobódások kialakulásának megértéséhez. Magyarországon jelenleg hiányzik a jól kiépített protokoll, amelyet egy napkitörés negatív hatásainak elkerülésére életbe lehetne léptetni, miután befut a figyelmeztetés a közelgő veszélyről, így a gyulai obszervatórium ilyen jellegű adatait egyelőre leginkább csak a Napfizikai Alapítvány munkatársai tudják hasznosítani, például ilyen esetekben kikapcsolják az elektromos eszközeiket. A értesítési rendszer kiépítésére nagy szükség lenne: Erdélyi Róbert elmondása szerint ha a Covid okozta károk és rizikófaktor egy skálán egy nagyságrendű besorolást kapnának, akkor az űrvihar által jelentett veszély nyolcvan nagyságrendű lenne. A jövőben, remélve, hogy a protokoll előbb-utóbb megszületik, még nagyobb jelentőséget kaphat az űridőjárás minél pontosabb monitorozása, és ebben is szerepet játszhat a Parker szonda tevékenysége.


A Parker szonda felfedezéseiről az elkövetkező időkben sokat hallhatunk még, mivel küldetése előreláthatólag egészen 2025-ig tart majd, a legutolsó repülése alkalmával nagyjából 6 millió kilométerre közelíti meg a Nap felszínét a tervek szerint. Az űridőjárással kapcsolatos megfigyelésekről pedig a Magyar Napfizikai Alapítvány által rendszeres megrendezett tudományos ismeretterjesztő előadásokon is szerezhetünk bővebb ismereteket, a rendezvények során a résztvevők távcsövekkel figyelhetik a Napot és a napfizikai kutatások rejtelmeibe is betekintést kaphatnak az érdeklődők.

(Fotó: Andrew Wang, NNASA/CXC/INAF/Argiroffi, C. et al./S. Wiessinger, ESA/Science Office, NASA)


Boldog karácsonyt!

Boldog karácsonyi ünnepeket és sikerekben gazdag, boldog új évet kívánunk!



Európai Naptávcső 2022-es naptára

Kedves EST rajongók! Az új EST naptár megjelent!

Letöltheted a honlapunkról: itt. A naptár feltöltheted a saját közösségi felületedre, cimkézd meg és használd a #ESTCalendar2022 hashtaget. Az idei kalendár témái az EST-ben résztvevő kutatóintézeteket.



Planetáriumok és bemutató csillagvizsgálók Workshop

2021. november 21-22-én tartották a Planetáriumok és bemutató csillagvizsgálók szerepe az oktatósban X. workshopot a Zselicben, Pécsen. Rendkívül sokszínű és tartalmas előadásokat és beszámolókat hallhattunk. Az Alapítványtól Belucz Bernadett, Soós Szabolcs és Asztalos Balázs vett részt.

Tizedik alkalommal szervezte meg a Zsolnay Kulturális Negyed Planetáriuma és a MTA PAB Csillagászati és Űrkutatási Munkabizottsága a "Planetáriumok és bemutató csillagvizsgálók szerepe az oktatósban Workshopot". A workshop célja lehetőséget adni az érintett egyesületeknek, szervezeteknek, vállalkozásoknak és személyeknek, hogy bemutathassák planetáriumuk, illetve bemutató csillagvizsgálójuk oktatási eszközeit, módszereit.

A találkozó első napján Forgács Balázs, az Utazó Planetáriumtól tartott egy rendkívül hasznos és sokrétű előadást a "Hatékony online média használat és a marketing tervezés alapjai." címmel, majd ezt követően az Utazó Planetárium 7m-es kupolájában tekinthettek meg a résztvevők néhány új filmet. Aworkshop második napján hallhattuk a különböző planetáriumok és obszervatóriumok beszámolóit, milyen programokat tartottakaz évben, milyen fejlesztéseket terveznek, mit terveznek a jővő évben. Mizser Attila beszélt az idén 75 éves Magyar Csillagászati Egyesületről, korabeli érdekességeket és képeket is bemutatott. A Kecskeméti Planetáriumtól, Szűcs László a planetárium oktatásban beltöltött szerepéről és a kisgyermekeknek szánt élő előadásokhoz használt ötleteikről beszélt. José Jiménez Garrido az Astroandalustól szintén a planetáriumukról beszélt. Csizmadia Szilárd a Vega Csillagászati Egyesülettől az ismeretterjesztés és amatőrcsillagászat a 21. század online világában betöltött szerepéről beszélt. A szünet után Hegedüs Tibor a SZTE Bajai Obszervatóriumtól a bajai "Csillagleső" planetáriumról beszélt, majd Belucz Bernadett az Alapitványtól a céljainkról eszközeinkről, módszereinkről. Gyarmathy István egy rendkívül érdekes előadást tartott a hortobágyi emberek csillagmitológiáiról és csillagvilágáról. Kovács Gergő, a debreceni Agórától egy, a szupernóvákról szóló saját fejlesztésű Nightshade skriptet mutatott be nekünk. Bemutatkozott a Bükki Csillagda. Megismerhettünk egy egészen egyedülálló oktatási segédanyagot is, amit a Pécsi Tudományegyetem gondozásában jelent meg. A Star Wars-filmekben látható bolygók és helyszínek adnak hátteret a hagyományos földrajz oktatás témaköreihez és az ismert közegben, újszerű cselekményeken keresztül a főhős egy missziót teljesít és ezen keresztül mutat be olyan természeti, társadalmi és gazdaságföldrajzi folyamatokat, amelyek tanulása, feldolgozása a hagyományos keretek között nehézségeket okozhat. Forgács Balázs beszélt a planetáriumok számára elérhető műsorokról és számos más planetárium és obszervatórium beszámolóját is meghallgathattunk milyen rendkívül színes és ötletes megoldásokkal igyekeznek azadott település fiataljaihoz közelhozni a csillagászat tudományát.

Bízunk benne, hogy a 2022-es évben is részt tudunk venni a rendezvényen, nagyszerű élmény volt! Köszönjük a szervezőknek és a Zsolnay Kulturális Negyed Planetáriumának!

1 / 24
2 / 24
3 / 24
4 / 24
5 / 24
6 / 24
7 / 24
8 / 24
9 / 24
10 / 24
11 / 24
12 / 24
13 / 24
14 / 24
15 / 24
16 / 24
17 / 24
18 / 24
19 / 24
20 / 24
21 / 24
22 / 24
23 / 24
24 / 24


Magyar Napfizikai Alapítvány

Hungarian Solar Physics Fundation

Last update: 2022 Jan © Copyright HSPF 2017