

WARWICK

Solar interior and helioseismology

Anne-Marie Broomhall (Centre for Fusion, Space, and Astrophysics, University of Warwick)

A bit about me

- Decided to study astronomy following eclipse in 1999.
- Masters in Maths and Astronomy from Univ. of Sheffield in 2004.
- PhD in solar physics from Univ. of Birmingham in 2008.
- My $1st$ daughter was born in 2009, my 2nd in 2012.
- Moved to Univ. of Warwick in 2012 for fellowship.
- Now Associate prof

Structure

- Introduction to structure of the solar interior
- What is helioseismology?
- Interesting, important helioseismic results.

Basic structure of the solar interior

• **Core**

- 0.25 $R_{\odot} \lesssim R$
- Where energy generated through nuclear fusion.

• **Radiative zone**

- 0.25 $R_{\odot} \leq R \leq 0.71 R_{\odot}$.
- Energy transported by radiation.

• **Tachocline**

- Thin interface layer
- Possible location of magnetic dynamo

• **Convection zone**

By Sarang - Own work, Public Domain, <https://commons.wikimedia.org/w/index.php?curid=51118538>

WARWICK

Fusion: pp chain

- Dominant mechanism of energy production in Sun.
- Inefficient process
	- Δm ~0.7% of 4 ¹H \rightarrow 26.7 MeV
	- It is slow
		- 1st reaction requires weak interaction & takes about 1 billion years.
	- Some of energy carried away by neutrinos.

Solar-neutrino problem

- Early solar neutrinos only detected around one third of predicted number of neutrinos from Sun.
- Neutrino physicists thought models of solar interior were wrong and core was cooler.
- Helioseismology showed core temperature was 15million degrees as predicted.
- Solution: neutrinos able to change flavour.

Fusion: CNO cycle

Proton

Neutron

Positron

- Each reaction outputs more energy than pp chain.
- BUT only accounts for around 1% of energy generated.
- AND this % is uncertain as solar metallicity poorly constrained.
- Recent results from Borexino neutrino experiment (The Borexino Collaboration, *Nature*, 2020) have reduced this uncertainty substantially.

Gamma ray γ By Borb - Own work based on: Fusion in the Sun.svg:, Public Domain, <https://commons.wikimedia.org/w/index.php?curid=691758> Neutrino V

Convection

- At base of convection zone, $T \sim 2$ mill K \rightarrow heavier ions hold on to electrons \rightarrow more opaque to radiation \rightarrow temperature gradient \rightarrow adiabatic gradient \rightarrow convection.
- Timescale for energy to rise through $CZ \sim$ weeks.
- Granulation cells: size~1-2Mm, lifetime~5-8min, ~1km/s.
- Supergranulation cells: size~20-30Mm, lifetime ~ days, ~400m/s

Courtesy of DKIS

What is helioseismology?

- Helioseismology allows conditions beneath the surface of the Sun to be probed.
- Each mode samples a different but overlapping region of the solar interior.

Stanford Solar Center

Types of oscillation

- p modes:
	- restoring force is pressure differential
	- amplitude largest at surface
	- main focus of this talk
- g modes:
	- restoring force is buoyancy
	- small amplitude at surface
	- not yet observed in the Sun

Image credit: SOHO (ESA & NASA)

Dynamical timescale of Sun

- The dynamical timescale is essentially the freefall time of the star.
- Suppose the internal outward pressure of the Sun is removed. The outer radius, *,* would collapse under gravity.
- The gravitational acceleration of the star at the surface is given by

$$
g = \frac{GM_{\odot}}{R_{\odot}^2}.
$$

Source: J. Stayner

Dynamical timescale of Sun

• The equations of motion tell us that

$$
t = \sqrt{\frac{2s}{a}}
$$

Say that the star collapses to a radius of $R_{\odot}/2$ in the dynamical timescale then

$$
\tau_{\rm dyn} = \sqrt{\frac{R_{\odot}^3}{GM_{\odot}}}
$$

- i.e. ~20min for the Sun upper limit for p mode periods.
- Dominant period for p modes is around 5mins (I'll show this later)

p modes

• In the adiabatic case the speed of sound is

$$
c_s^2 = \frac{\Gamma_1 p}{\rho},
$$

where Γ_1 is the first adiabatic exponent

• For an ideal gas

$$
p=\frac{k_B}{\mu m_p}\rho T,
$$

where μ is the mean molecular weight, m_p is the mass of a proton

• Giving

$$
c_s^2 = \frac{\Gamma_1 k \Gamma}{\mu m_p}
$$

Profiles of the solar interior

Figure 1: Sound speed (left) and temperature (right) as a function of radius predicted by Model S of Christensen-Dalsgaard et al. (1996, Science, 272, 1286).

Standing waves in 3 dimensions

- Described by stationary slices through sphere.
- Needs three numbers
	- Two for surface structure
		- ℓ determines the total number of node lines on surface
		- m determines number through equator
	- n for number of nodes from centre to surface

Different depths

- The oscillations travel to different depths in the solar interior.
- As they travel inwards they are refracted by the increasing temperatures and pressures.
- Low-*&* travel deeper than high-*&*
- The frequencies of the oscillations are determined by the properties of the plasma they travel through.

WARWI

Upper turning points of modes

- Modes are reflected by the sharp drop in density at the Sun's surface.
- Modes are trapped in a cavity and so can become standing waves.
- Modes only reflected if density scale height < length scale of mode \rightarrow pressure changes required to make the wave cannot be maintained over mode period.
- Density scale height reaches a minimum just above surface \rightarrow maximum frequency above which modes no longer reflected.
- Known as acoustic cut-off, \approx 5100µHz (\approx 3 min).

Global velocity timeseries

But what do they sound like

One wave scaled to middle C

All waves

Global resolved power spectra

Local helioseismology: Ring diagrams

- Track patches of surface with radius 2-30○ .
- Produce 3D power spectra.
- When no flow, radius of each ring is wavenumber.
- Flows distort the rings.

Local Helioseismology: Time-distance

- Measure crosscovariance between two points.
- Ridges correspond to different paths taken by the wave energy.
- Flows obtained by inverting crosscovariance observations.

Helioseismic holography: Far-side imaging

[http://jsoc.stanf](http://jsoc.stanford.edu/data/timed/) [ord.edu/data/ti](http://jsoc.stanford.edu/data/timed/) [med/](http://jsoc.stanford.edu/data/timed/)

Depth of the convection zone

- Sharp change in temperature gradient impacts sound speed
- Helioseismology determined the radius of the base of the Sun's convection zone is $0.713 \pm 0.001 R_{sun}.$
- What is the impact of

Abundances within the Sun

- Difficult to measure with spectroscopy.
- Remember $c_s^2 \propto \mu^{-1}$
- Helioseismology \rightarrow helium abundance, Y=0.25.
- Research ongoing into solar abundance problem

Internal rotation profile

• Rotation splits frequencies of *m* components.

$$
\delta \nu_{\rm rot} = \nu_{\ell,n,m+1} - \nu_{\ell,n,m}
$$

• For the Sun,
$$
\delta v_{\text{rot}} \sim 0.4 \mu\text{Hz}
$$
,
\n
$$
\Omega_{\text{rot}} = \frac{1.0}{\delta v_{\text{rot}}},
$$
\nor ~29d.

- Why is there a near-surface shear layer?
- Why doesn't the tachocline diffuse?

The solar dynamo

 Ω -effect

Spots near the equator connect with one another, while those at higher latitudes are carried poleward by flows

BL mechanism

Sanchez et al (2014)

Solar cycle variations in p modes

Seismic frequencies and the solar cycle WARWICK

- Seismic frequencies respond to changes in the surface activity (Woodard & Noyes ,1985).
- Causes:
	- Direct Lorentz force.
	- Indirect change in cavity properties.
- Shift $\approx 0.01\%$ of mode frequency
- Shift of $\approx 0.03\mu$ Hz G⁻¹

Frequency shift inversions

• Howe et al. (2002) localized the frequency shifts in latitude.

Can we probe deeper regions?

Torsional Oscillation

Meridional circulation

Flows around active regions/sunspots WARWICK

Gizon L, et al. 2010. ₳ Annu. Rev. Astron. Astrophys. 48:289-338

Summary

- We know a great deal about the interior of the Sun even though we can't actually see it.
- Helioseismology allows us to infer conditions in the solar interior.
	- Primarily looks at acoustic p modes.
	- These can then be used to infer properties & flows in interior and how they vary.
	- Can inform understanding of e.g. abundances, dynamo, flux emergence, farside.
- The Sun is just 1 star and can now do asteroseismology on many, many other stars.

- Thanks for listening
- Any questions?

Credit: Me, Chile, 2019

Asteroseismology

- Uses natural resonant oscillations of stars to learn about their interiors.
- Kepler and CoRoT missions made asteroseismic observations.
- Now TESS
- Coming soon: PLATO

Asteroseismic power spectra

Davies et al., 2015, MNRAS Ballard et al., 2014, ApJ

Summary of main results

- Helioseismology results can constrain models of the interior
	- Don't forget neutrino observations, especially for deep interior.
- Helioseismology can infer small and large scale flows in solar interior
	- Particularly important for understanding and modelling small and large scale magnetic fields.
- Thanks for listening… any questions?

Testing solar models

- When using helioseismology to infer internal conditions we compare models and observations.
- 'Surface term' discrepancies are due to e.g.
	- Poor modelling of temperature gradients in superadiabatic layer.
	- Use of adiabatic approx. when calculating frequencies.
	- Interactions between convection and oscillations not accounted for.

The 'surface term'

- Corrections based on parametric fit to frequencies e.g. Gough, 1990, Ball et al., 2016.
- 3D hydrodynamical simulation, nonadiabatic effects, and a consistent treatment of the turbulent pressure e.g. Houdek et al, 2017

Solar abundance problem

- Heavy element abundance is important input into solar models
- To determine need to use model atmosphere.
- Conversion to 3D models and non- $\frac{3}{5}$ 0.01 LTE effects reduced Z/X.
- Numerous attempted solutions include modified opacities, gravitational settling, enhanced diffusion, dark matter…

Limitations of p modes

- Inversions of core conditions poorly constrained by p modes.
- Gravity modes far more sensitive to solar core.

WARWICK

Core

Photosphere

Detections of gravity modes

- No independently confirmed detections of individual g modes.
- Some evidence but controversial.
- Garcia and Fossat results both imply rapidly rotating core.

One cell or two?

- Zhao et al. (2013) found hint of two А cells.
- But large uncertainties and other results disagree

 U_{θ} (m s $^{-1}$)

-1

Zhao et al. (2013) Gizon et al. (2020)

 $15^\circ N$

 0°

 $15°S$

 $30°S$

s

<https://www.ophysics.com/waves/waves6.html>

[ml](https://faraday.physics.utoronto.ca/PVB/Harrison/Vibrations/Vibrations.html)

Nodes described by lines on membrane

Fitting frequency-power spectra

Acoustic cut-off frequency

The acoustic cut-off frequency is given by

$$
\omega_a^2 = \frac{c_s^2}{4H_\rho^2} \left(1 - 2\frac{\mathrm{d}H_\rho}{\mathrm{d}r}\right),\,
$$

where H_{ρ} is density scale height

- But equation of state says $H_{\rho} \propto T$.
- T decreases with r until it reaches a minimum, $T = T_{\min}$.
- Here $H_{\rho} = H_{\rho, min}$, and $\omega_a = \omega_{a,max}$.
- In the Sun $v_{a,\text{max}} \approx 5100 \mu \text{Hz}$.

Sun-as-a-star power spectrum

• Modes with largest amplitudes have frequencies around 3000µHz or periods ~5min.

Azimuthal degree, *m*

Radial degree, *n*

1D and 2D standing waves

 $\delta f = v/2$ L=constant

<https://www.ophysics.com/waves/waves6.html>

The solar dynamo

