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Sun-Earth Interactions
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Who am 1? esa

2007-2011

MMath University of Sheffield

2011-2015

PhD University of Sheffield &
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2015-2022
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Who am 1?

Began my career by gaining
experience in experimental
observational solar physics by
spending (a lot of) time at
three different ground-based
solar telescopes.

Many of these opportunities
came about through funding
from the SOLARNET project.

I am also a member of the
Science Advisory Group for
the next generation European

Solar Telescope. Dunn Solar Swedish Solar GREGOR
Telescope Telescope
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Who am 1? esa

More recently, I have also
become involved in space-borne
missions such as NASA’s
Interface Region Imaging
Spectrograph (IRIS) as a
Science Planner and the
European Space Agency’s Solar
Orbiter as a Solar Orbiter
Observing Plan (SOOP)

Coordinator.
Interface Region Imaging
Spectrograph
Solar Orbiter
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Who am 1?

esa

I am interested in how energy is
transported from the lower layers
of the solar atmosphere into the
upper layers of the solar
atmosphere, and how it is
dissipated when it gets there.

For this, we need a combination of
ground-based instruments (which
are very good at observing the
lower solar atmosphere) and

space-borne instruments (which ¢

are very good at observing the
upper solar atmosphere).
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Overview

1. Introduction to magnetic waveguides
2. Introduction to magnetohydrodynamic (MHD) waves

3. Introduction to MHD instabilities
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Introduction to the solar atmosphere

Introduction to magnetic waveguides
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he Photosphere esa

The photosphere is the Ilowest
region of the Sun that we can
directly observe.

Temperature ~ 6000 K
Density ~ 1023 m-3
Height ~ <600 km

o

Tt

»Y

X

In the quiet-Sun, the photosphere
is dominated by granular motions
and magnetic bright points. In
Active Regions, it is dominated by
large-scale sunspots and pores.

Credit: NSO/NSF/AURA
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he Chromosphere

Above the photosphere,
lies the complex and
dynamic chromosphere.

Temperature ~ <50000 K
Density ~ 1012 m-3
Height ~ 600-2000 km

The chromosphere s
dominated by long, thin
fibril ~ structures which %’;.\.‘“ \

seem almost horizontal DAL N N,

in nature. Credit: SST/CHROMIS

l;f
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he

ransition Region

esa

The transition region is a thin
region above the chromosphere
where the temperature rises
extremely quickly.

Temperature ~ 50000-100000 K
Density ~ 1016 m-3
Height ~ 2000 km

Host to a range of features and
processes

physical

combine to make this

which all

region

extremely complicated to model.

Credit: IRIS/LMSAL/NASA
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he Corona

The vast region stretching out into
space above the transition region.

Temperature ~ 100000< K
Density ~ <101> m-3
Height ~ 2000< km

This region is host to one of the
longest standing puzzles in
astrophysics, namely the ‘solar
coronal heating problem’. How energy
is transported to and dissipated in this
region to heat the plasma remains a
well-studied and popular mystery.

Credit: Hi-C/NASA
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he Solar Atmosphere
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Sunspots

esa

Earth-sized regions of  strong
magnetic field contained within
active regions most clearly seen in
the photosphere.

Magnetic field strengths ~ 2000 G<
Diameters ~ 20 Mm<
Lifetimes ~ Days

The lower intensity within the
sunspot ‘umbra’ is a result of the
strong magnetic field inhibiting
convection and, therefore, lowering
the local temperature.
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Sunspots esa

MSAL/NASA, Don Schmit
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Sunspots

, LMSAL/NASA, Wei Liu
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Coronal Loops

Long, thin strands of plasma
tracking the magnetic field
within the corona. These
events highlight the
connectivity in the upper
atmosphere between positive
and negative magnetic field
regions in the photosphere.

Typical lengths ~ 100< Mm
Temperatures ~ 600000< K
Lifetimes ~ Hours
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Coronal Loops

Long, thin strands of plasma
tracking the magnetic field
within the corona. These
events highlight the
connectivity in the upper
atmosphere between positive
and negative magnetic field
regions in the photosphere.

Typical lengths ~ 100< Mm
Temperatures ~ 600000< K
Lifetimes ~ Hours

Credit: NASA/TRACE
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Coronal Loops
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Coronal Loops

Slit §1 space—time map
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he Solar Atmosphere esa

* Highly stratified — Densities, temperatures, and other physical
parameters vary by several orders of magnitude over distances of
tens or hundreds of km
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he Solar Atmosphere

esa

« Highly stratified - Den5|t|es temperatures and other

physical
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he Solar Atmosphere esa

« Highly stratified — Densities, temperatures, and other physical
parameters vary by several orders of magnitude over distances of
tens or hundreds of km

« Highly structured - Filled with features such as sunspots, spicules,
coronal loops.

24
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he Solar Atmosphere

Contiruem ‘ommatae hesght

| Wedermeyer et ol (X015)

| Wedemeyer et al. (2015)
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he Solar Atmosphere esa

« Highly stratified — Densities, temperatures, and other physical
parameters vary by several orders of magnitude over distances of
tens or hundreds of km

« Highly structured - Filled with features such as sunspots, spicules,
coronal loops.

« Highly dynamic - Structures evolve over time-scales of seconds,
minutes, or hours.
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he Solar Atmosphere esa

2022—-03—-03T09:43:51.518 2022-03—-03T09:43:51.576 2022-03—-03T09:44:30.99Q

cal
Nnces of

* Highly
paramy
tens of

« Highly picules,

corona

« Highly onds,

minute
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he Solar Atmosphere esa

« Highly stratified — Densities, temperatures, and other physical
parameters vary by several orders of magnitude over distances of
tens or hundreds of km

« Highly structured - Filled with features such as sunspots, spicules,
coronal loops.

« Highly dynamic - Structures evolve over time-scales of seconds,
minutes, or hours.

Highly complex — Different physics required to describe the
behaviour of the solar atmosphere at different locations.
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Introduction to MHD Waves

Introduction to MHD Waves

Geodbloed & Poedts, Principles of Magnetohydrodynamics, 2004
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ldeal MHD Equations

esa

The ideal MHD equations
describe the relationships
between the magnetic field,
velocity, pressure, and
density in a plasma.

They apply only in specific
conditions, namely, in large-
scale (relative to the ion
gyroradius), slow (relative to
the ion gyroperiod) processes
in non-relativistic plasmas.
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Magnetohydrostatics esa

0
a_p + V(pV) =0 Mass
‘ Continuity
d (P
9 _, d_(_y> —0 Energy
Jt LAP Equation
dV 1
p— =—-VP—-—BXx (VxB) Euler's
dt U .
Equation
V=0 OB
Frie V X (VX B) Induction
g Equation
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Magnetohydrostatics esa

/aa{+ VigX') = 0 Mass
Continuity
)
—V— | = Energy
] dy\p’ , Equation
/Z— —VP——BX(VXB) Euler’s
Equation

Z/VX/B) Induction
Equation

V-B=0 Solenoidal
Condition
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Magnetohydrostatics

We are left with:

1
—VP——BXx(VxXxB)=0
Ho

Which can be rewritten as:

BZ

1
—VP-V—+—(B-V)B =0

20 Mo
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Magnetohydrostatics esa

We are left with:

1
—VP——BXx(VxXxB)=0
Ho

Which can be rewritten as:

Gradient of the Magnetic
gas pressure Gradient of the tension

magnetic pressure

34
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Plasma Beta esa

If we calculate the ratio of the gas and magnetic pressures, we obtain a
value known as the ‘plasma beta’: »

p= B?/2p,
This term, essentially, tells us whether the gas or the magnetic field is

the dominant mechanism in a specific region of plasma. Rewriting this
term such that:

B =3.5x10"21nTB2

allows us to estimate the plasma beta in specific regions.
In a granule: n =1023 m3, T =6000K, and B =100 G returns g =210

In a sunspot: n =1023 m3, T = 6000 K, and B = 2000 G returns g = 0.5
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Magnetohydrodynamics

dp
— V) =0
at+V(p)

dP_O
dt\p’]

Pt
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Magnetohydrodynamics esa

9P VoV =0
ot pPV) =

dP_O
dt\p’)

ASSUMPTIONS

No stratification — The density and pressure
are constant everywhere

dV
PE No structuring — The magnetic field is purely
1 vertical and is constant everywhere

= —-VB— —B X (VX B)
— Ho
ot
=V X (VXB)
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Magnetohydrodynamics

P (V) = 0
ot pY) =

i(£> ) B =B, + By(,1)

dt \p" V=0+V,(rt)
dv m—P  P=P,+ P,(1,t)
P dt , p=po+pi(r,Y)
= —-WB— —B x (VX B)

— Ho

ot

=V X (VX B)
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Magnetohydrodynamics

dp

—+V(pV) =0

5 T V(pV)

i(ﬂ)ZO B = B,

dt \p" V=04V, t)
Pat 1 p =P,
= —-WB— —B x (VX B)

— Ho

ot

=V X (VXB)

Assume these
perturbations are small
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Magnetohydrodynamics esa

dp
— 4+ V(pV) =0 0
gt T P 2P1 y pVV, = 0
g /P ot
_<_> — O B — BO + Bl(r’ t) apl )/PO apl
dt\p” V=0+Vy1) ot p 0t=O
av — P=P0+P1(1‘»t)_>dv 0 1
Pat 1 PPt p—t=—VP,——Byx (VxB)
= —VyB— —B x (V X B) Ho
— Ho 0B,
ot — =V x (V, XBy)
=V x (VX B) dat
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Magnetohydrodynamics esa

Let us assume we have a straight

magnetic field in the xz-plane and

37 TPoVVi =0 plane waves propagating in the z-
direction, such that:

dP, yPy0p;
. =0
ot p, Ot
dV 1 _ _
,00—1 = —-VP, ——B, X (VXB)) B, = B,sinae, + B,cosae, ,

dt Ho 3

0B — = —iw,

—- = Vx (V; X By) ot

V- ik
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Magnetohydrodynamics

—lwpy + ikpV,1 _ o

, ikBycosa
—lwpyV 4 B.1=0,
- Ho
, ikBycosa
—lwpoVyy Byi_o
Ho ’
ikBysina

_ia)povzl n lkPl + ‘u
0

—iwBx, + ikB,sinaVz, — ikB,cosaVx,; = 0,

—iwBy, + ikBycosalVy, = 0,

—iwBz, =0,
LwyP
—la)Pl— y Op1=0,
Po

Bxl _ O,
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Alfvén Waves

esa

—lwp, +1kpeV,1 _ o

P ikBocosaB =0 Terms in the y-direction
TP T xt =Y decouple returning:
ikBycosa
—iwp,V,; 0 B,i o w? — CA?cos?ak? = 0
_ Ho —
oV kP ikBOSinaB ;
—lwpeVa  IkPrt— B o where C,2= (HB;) is the
—iwBx, + ikB,sinaVz, — ikB,cosaVx,; = 0, square of the Alfvén speed.
<iwBy, + ikB,cosalVy, =0,
o This is the dispersion
—twbz, =0, relation for Alfvén waves.
. Lwy P
—iwP, — py =0,
Po -
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Alfvén Waves esa

w? — CA%cos?ak? = 0

Key take-homes:

 Transverse waves — perpendicular to k.

 Only dependent on the magnetic field — no gas pressure
terms.

 Non-compressible — no ability to perturb the density.

Do not perturb the axis of the host structure.

Combined, these facts make Alfvén waves extremely
difficult to observe.
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Alfvén Waves esa

Erdélyi & Fedun, Science, 2007
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Alfvén Waves — Cylindrial Geometry
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Alfvén Waves

nature
astronomy

ARTICLES

https://doi.org/10.1038/541550-021-01354-8

W) Check for updates

Torsional oscillations within a magnetic pore in

the solar photosphere

Marco Stangalini©'2%, Robertus Erdélyi345=, Callum Boocock®, David Tsiklauri ¢,
Christopher J. Nelson©7, Dario Del Moro?, Francesco Berrilli©>® and Marianna B. Korsés**°

Alfvén waves have proven to be important in a range of physical systems due to their ability to transport non-thermal energy
over long distances in a magnetized plasma. This property is of specific interest in solar physics, where the extreme heating of

the atmosphere of the sun remains i Inani

dlre:tly observed m the photosphere. Here, we report the

plasma such as a flux tube in the solar atmosphere, they

perturbations. However, desplte ewdente in the upper atmosphere, they have not been

oscillations observed

ina ic pore in the

State-of-the-art numerical

by the Interferometric

slmnlahons suggest that akink mode is a posslble excitation mechanism of these waves. The excitation of torsional waves in

ructures can
eration of the solar wind, if such si will be

to the energy transport in the solar atmosphere and the accel-

in even smaller structures with the forth-

coming next generation of solar telescopes.

than 70 years ago' and they were immediately recognized

for their potential impact in many research areas, including

neutrino physxcs the heating of the solar upper atmosphere—the

lar disks®, the

physus of the mterstellar medlum‘ pamcle acceleration around

supermassive black holes’ and nuclear fusion research, where these

magnetic waves have been proposed as a possible effective heating
mechanism in tokamaks"".

One of the fundamental major applications in plasma physics is
that torsional waves play a key role in the transportation and dissipa-
tion of energy, potentially leading to heating. Examples where these
properties could be important include both laboratory and space
plasmas, such as the intergalactic medium, plasma fusion reactors
or the solar atl here from the ch here to the corona. In
solar magnetic flux tubes, these waves manifest as either axisym-
metric or antisymmetric torsional perturbations' (torsional Alfvén
waves; hereafter TAWs), which have magnetic tension as their
sole restoring force. A number of studies have presented a range
of indirect confirmations of Alfvén wave manifestation'' over the
past decades, including counter-flowing velocities on opposite sides
of solar jets and perturbations to spectral linewidths. These earlier
studies were limited mostly to the upper solar atmospher and
solar wind'!, meaning that no observation of torsional motion that
could be linked to TAWS'” has been directly detected in the photo-
sphere. Therefore, Alfvén waves remain the most elusive, yet physi-
cally intriguing, class of magnetohydrodynamic (MHD) waves, and
are still waiting to be fully understood despite decades of research.

Spectropolarimetry has long been a standard method used to
infer magnetic fields in the Sun and other stars; however, the spa-
tial, temporal and spectral resolutions we can now achieve with

The existence of Alfvén waves was predicted theoretically more

observations of our nearest star mean that the polarimetric foot-
print left by the magnetic field in the Sun’s photospheric plasma
can now be exploited to map and study its magnetic structures and
their associated dynamics in fine detail. Specifically, the high tem-
poral and spatial resolutions (scales close to 120km on the surface
of the Sun can be sampled a few times every minute) achieved by
modern two-dimensional solar spectropolarimetric imagers such as
the Interferometric Bidimensional Spectropolarimeter (IBIS)", the
two-dimensional spectropolarimeter at the Dunn Solar Telescope
(New Mexico, USA), are perfect for studying the fine structure and
rapid dynamical behaviour of photospheric magnetic structures
such as pores. The instantaneous circular polarization (CP) map of
the light emerging from the pore studied here in the magnetically
sensitive Fe 1617.3 nm spectral line is plotted in Fig. 1a. This repre-
sents a direct indicator of the vertical magnetic field of the structure
at this time. The ~69 min duration and 52s temporal resolution of
the IBIS dataset studied here allow us to investigate the evolution
of the entire magnetic structure and, specifically, to trace torsional
magnetic oscillations, perpendicular to the line of sight, through
time. To achieve this, we initially transform the temporal sequence
of CP maps into polar coordinates (see Supplementary Fig. 1 for
an ple). The positions of the centres of the two
magnetlc lobes (marked by the two crosses in Fig. 1a) are employed
as the radial origins of the structures. Overplotted on Fig. 1a are the
streamlines of the torsional oscillations with azimuthal wave num-
ber m= 1, indicating its dipolar nature. The measured angular shifts
of both lobes, as a function of time, are shown in Fig. 1b, where it is
simple to recognize a periodic angular displacement in both sides of
the pore. It is worth noting that the torsional oscillations of the two
lobes are out of phase. The thickness of the curves indicates the 3¢
error associated with the measures (see Methods for more details).

'AS|, Italian Space Agency, Rome, Italy. 2INAF-OAR, National Institute for Astrophysics, Monte Porzio Catone, Italy. *Solar Physics and Space Plasma
Research Centre (SP2RC), School of Mathematics and Statistics, The University of Sheffield, Sheffield, UK. “Department of Astronomy, Eétvés Lorand
University, Budapest, Hungary. *Gyula Bay Zoltan Solar Observatory (GSO), Hungarian Solar Physics Foundation (HSPF), Gyula, Hungary. *School of
Physics and Astronomy, Queen Mary University of London, London, UK. ’Astrophysics Research Centre (ARC), School of Mathematics and Physics,
Queen’s University, Belfast, UK. “Department of Physics, University of Rome Tor Vergata, Rome, Italy. Department of Physics, Aberystwyth University,

Aberystwyth, UK. Be-mail: marco.stangalini@asi.it; robertus@sheffield.ac.uk
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Magnetoacoustic Waves esa

Manipulating the other linearised MHD equations gives:
(w? — CA%cos?ak?)(w? — CS?*k?) — CA%sinaw?k?* =0

where C* = (VP—PO) is the square of the sound speed. This 4t

order equation has two pairs of solutions corresponding to s/ow
and fast magnetoacoustic waves.
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Magnetoacoustic Waves esa

Manipulating the other linearised MHD equations gives:
(w? — CA%cos?ak?)(w? — CS?*k?) — CA%sinaw?k?* =0

where € = (VP—PO) is the square of the sound speed. This 4t" order

equation has two pairs of solutions corresponding to s/low and fast
magnetoacoustic waves.

Key take-homes:
* Longitudinal waves - parallel to k.
 Both magnetic and gas pressure terms — return to acoustic

waves if B, = 0.
« Highly compressible.
« Ability to perturb the axis of the host structure.
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Magnetoacoustic Waves — Cylindrical Geometry Eesa
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MHD Seismology esa

Apply MHD equations in different geometries including
other effects such as cooling, twist, partial ionisation

52
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MHD Seismology esa

Apply MHD equations in different geometries including
other effects such as cooling, twist, partial ionisation

!

Derive properties of different wave types
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MHD Seismology esa

Apply MHD equations in different geometries including
other effects such as cooling, twist, partial ionisation

!

Derive properties of different wave types

!

Compare these to observations of waves in the solar
atmosphere
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MHD Seismology esa

Apply MHD equations in different geometries including
other effects such as cooling, twist, partial ionisation

!

Derive properties of different wave types

!

Compare these to observations of waves in the solar
atmosphere

!

Infer properties (temperature, density, magnetic field)
about the background solar atmosphere
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esa

MHD Seismology
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Multi-Messenger Analyses

esa
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Multi-Messenger Analyses esa
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Introduction to MHD Instabilities

Introduction to MHD Instabilities
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What is an instability?

esa

Essentially, an instability is a runaway process that occurs when a magnetic

configuration is perturbed from an unstable equilibrium state. MHD instabilities can

have many different forms.

N/

Stable Equilibrium

Unstable Equilibrium From numerous
sources...
60
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Introduction to MHD Instabilities

There are lots of different MHD instabilities. We certainly don’t have time to discuss
them all. Some examples are:

Kink instability

Torus instability
Kelvin-Helmholtz instability
Tearing mode instability
Bouyancy instability
Thermal instability

Rayleigh-Taylor instability
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Kink instability

Abstract

We show how some different fundamental plasma processes - the ideal kink instability,

magnetic reconnection and magnetohydrodynamic oscillations - can be causally linked.

This is shown through reviewing a series of models of energy release in twisted magnetic
flux ropes in the solar corona, representing confined solar flares. 3D
magnetohydrodynamic simulations demonstrate that fragmented current sheets develop
during the nonlinear phase of the ideal kink instability, leading to multiple magnetic
reconnections and the release of stored magnetic energy. By coupling these simulations (c)

(d)

Var: Magnetic Fleld/B_s

Var: Mognetic Flebd/B_s

with a test particle code, we can predict the development of populations of non-thermal

0.8500

electrons and ions, as observed in solar flares, and produce synthetic observables for

- 0.8000

.’ioyw
0.7000

Max: 0.9335

comparison with observations. We also show that magnetic oscillations arise in the
reconnecting loop, although there is no oscillatory external driver, and these lead to
pulsations in the microwave emission similar to observed flare quasi-periodic pulsations.

Oscillations and propagating waves also arise from reconnection when two twisted flux
ropes merge, which is modelled utilising 2D magnetohydrodynamic simulations.

Browning et al. (2024)

Requires twist! Hood et al. (2009)
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Kink instability

-\

Torok & Kleim (2004) |~ =
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Rayleigh-Taylor instability

2.1000
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Rayleigh-Taylor instability

Y (1000km)

Prominence Velocity

20 40 60 80 100
X (1000km)
0 m TN [Requires different densities
Hillier et al. (2017) :
-5.00 0.00 5.00 .
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hermal instability

Coronal
heating events

Thermal conduction

Chromospheric
1 evaporation

: Radiative
Density ¥ losses &

Evacuated
flux tube

Corona

1

Runaway
cooling

Coronal loop

588§

Prominences
A

Accumulation

Thermal
Instability

&

Coronal Rain

Evacuation

3

Temperature .

Requires heating events!

Coronal loop
with rain

Antolin (2020)
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hermal instability — Coronal Rain
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hermal instability — Coronal Rain

Credit: IRIS, LMSAL/NA
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Conclusions esa

MHD Waves and Instabilities are everywhere within the solar
atmosphere. They could be important for atmospheric heating but
also for driving dynamic Space Weather events.

Go out there and investigate them!
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ESA Science Research Fellowship esa

What?

» independent postdoctoral fellowship for ESA State nationals
» research project covering any topic in space science

» 2 + 1 years (proposal for 3rd year extension)

Eesa

""ESA SPACE-SCIENCE

FELLOWSHIP PROGRAMME Where?

Join us in the exciting adventure that
is space science! o SRR

» ESTEC (Netherlands), ESAC (Spain) or STScl (USA)

Why?

» 100% research time (optionally <20% functional work, e.g. archive/data
science, citizen science, operations, calibration, communication)

» Insights into ESA environment & activities

» mentoring from senior ESA Science Faculty members

» training available (e.g. spacecraft design, soft skills, management)

» 3500-4600€ net monthly salary (depending on location & experience)

» comprehensive health coverage

Website: https://www.cosmos.esa.int/web/space-science-faculty/opportunities/research-fellowships contact: fellowship@ cosmos.esa.igot

N oIl N 1= o1 85 o= O e B ZR 2= _— B Em i vl » THE EUROPEAN SPACE AGENCY



ESA Archival Research Programme esa

ARCHIVAL RESEARCH VISITOR PROGRAMME

To increase the scientific return from its space science missions, ESA welcomes applications from scientists interested in pursuing
research based on publicly available data in the ESA Space Science Archives, The Archives host data from all current and past
ESA space science missions in astronomy, planetary science, and heliophysics.

The ESA Archival Research Visitor Programme is open to scientists at all career levels who are affiliated with institutes in ESA
Member States and Collaborating States, although we will also consider strong applications from outside those states. Early-
career scientists (within 10 years of the PhD) are particularly encouraged to apply, including PhD students (see below). We
encourage applications from women and minorities. The evaluation process is anonymised to ensure equal opportunities for all
applicants.

Residence lasts typically between one and three months, also distributed over multiple visits, depending on the complexity of the
research project. The research projects can be carried out at ESAC (Madrid, Spain) and at ESTEC (Noordwijk, Netherlands). To
offset the expenses incurred by visitors, ESA covers travel costs from and to the home institution and provides support for
lodging expenses and meals.

During their stay, visiting scientists have the opportunity to interact with archive and mission specialists for questions on the
retrieval, calibration, and analysis of archival data. In principle, all areas of space research covered by ESA science missions can
be supported. To ensure that technical expertise in the specific area of interest is available at ESAC or ESTEC, applicants should
consult the table of expertise and contact the relevant scientists in their field of interest (this is very important), 1n case of
doubts, write to the programme coordinators for assistance at arvp@cosmos.esa.int,

https://www.cosmos.esa.int/web/esdc/visitor-programme .
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