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Magnetohydrodynamics (MHD)

magneto-

≡ electromagnetism

-hydrodynamics

≡ fluid dynamics



Magnetohydrodynamics (MHD)

• Couples Maxwell’s equations of 
electromagnetism with hydrodynamics

• Describes macroscopic behaviour of 
conducting fluids such as plasmas

• Important e.g. for solar physics, 
magnetospheric physics, astrophysics, 
laboratory plasma experiments

Top: Sun-Earth connection (www.esa.int)
Bottom: Interior of JET tokamak in Culham, UK, with superimposed image of hot 
plasma (ccfe.ukaea.uk)



Fluid Equations

Continuity equation (mass conservation): classically, matter is 
neither created nor destroyed

𝜕𝜌

𝜕𝑡
+ ∇ ⋅ 𝜌𝐯 = 0

𝜌 = fluid mass density
𝐯 = fluid velocity



Fluid Equations

Equation of motion (momentum conservation, Newton’s 2nd Law):

𝜌
𝐷𝐯

𝐷𝑡
= −∇𝑝 + 𝜌𝐠,

where
𝐷

𝐷𝑡
≡

𝜕

𝜕𝑡
+ 𝐯 ⋅ ∇

is the total time derivative or convective derivative.

𝑝 = pressure
𝐠 = gravitational acceleration



Fluid Equations

Fluid energy equation (energy conservation):
 

𝐷𝑝

𝐷𝑡
= −𝛾𝑝∇ ⋅ 𝐯 + 𝛾 − 1 𝑄

𝛾 = ratio of specific heats, normally 𝛾 = 5/3
𝑄 = heating rate, can contain positive (heating), negative (cooling e.g. 
by radiation) and “movement” (e.g. thermal conduction) terms

𝑄 = 0: adiabatic case



Summary of Fluid Equations

Mass Continuity:
𝜕𝜌

𝜕𝑡
+ ∇ ⋅ 𝜌𝐯 = 0

Equation of motion:

𝜌
𝐷𝐯

𝐷𝑡
= −∇𝑝 + 𝜌𝐠,

Energy equation:
𝐷𝑝

𝐷𝑡
= −𝛾𝑝∇ ⋅ 𝐯 + 𝛾 − 1 𝑄



Maxwell’s Equations

𝐁 𝐄

Div

Solenoidal Constraint

∇ ⋅ 𝐁 = 0

Gauss’ Law

∇ ⋅ 𝐄 =
𝜌𝑐

𝜖0

Curl
Ampère’s Law

∇ × 𝐁 −
1

𝑐2

𝜕𝐄

𝜕𝑡
= 𝜇0𝐣

Faraday’s Law

∇ × 𝐄 +
𝜕𝐁

𝜕𝑡
= 0

𝐁 = magnetic field
𝐄 = electric field
𝐣 = electric current 

density
𝜌𝑐 = charge density
𝜖0 = permittivity of 

free space
𝑐 = speed of light 

in vacuum



Coupling the Fluid and EM equations

Ohm’s Law (for moving conductors):

𝐣 = 𝜎(𝐄 + 𝐯 × 𝐁)

𝜎 = conductivity of material

• Conducting fluid can change electromagnetic fields

• How do electromagnetic fields affect the fluid?



Electromagnetic energy and Poynting’s Theorem (1984)

𝜕𝑈

𝜕𝑡
+ ∇ ⋅ 𝐒 = −𝐄 ⋅ 𝐣, 𝑈 =

𝜖0𝐸2

2
+

𝐵2

2𝜇0
, 𝑺 =

1

𝜇0
𝐄 × 𝐁



Electromagnetic energy and Poynting’s Theorem (1984)

𝜕𝑈

𝜕𝑡
+ ∇ ⋅ 𝐒 = −𝐄 ⋅ 𝐣, 𝑈 =

𝜖0𝐸2

2
+

𝐵2

2𝜇0
, 𝑺 =

1

𝜇0
𝐄 × 𝐁

How is energy converted with Ohm’s law?

𝐣 = 𝜎 𝐄 + 𝐯 × 𝐁 ⇔ 𝑬 = −𝐯 × 𝐁 +
𝒋

𝜎

−𝐄 ⋅ 𝐣 = 𝐯 × 𝐁 ⋅ 𝐣 −
j2

𝜎
= 𝐯 ⋅ 𝐁 × 𝐣 −

j2

𝜎
= −𝐯 ⋅ 𝐣 × 𝐁 −

𝑗2

𝜎

Work done on conductor

Resistive heating



Electromagnetic forces

Lorentz force on a charged particle (microscopic):

𝐅L = 𝑞(𝐄 + 𝐯 × 𝐁)

Lorentz force density over fluid element (macroscopic):

𝒇𝐿 =
1

𝛿𝑉
෍

𝑖

𝑭𝐿𝑖 =
1

𝛿𝑉
෍

𝑖

𝑞𝑖 𝐄 +
1

𝛿𝑉
෍

𝑖

𝑞𝑖 𝐯𝑖 × 𝐁 = 𝜌𝑐𝐄 + 𝐣 × 𝐁



Summary of key EM results

Maxwell’s equations:

∇ ⋅ 𝐁 = 0, ∇ × 𝐁 −
1

𝑐2

𝜕𝐄

𝜕𝑡
= 𝜇0𝐣

∇ ⋅ 𝐄 =
𝜌𝑐

𝜖0
, ∇ × 𝐄 +

𝜕𝐁

𝜕𝑡
= 0

Ohm’s law for conductors:

𝑬 = −𝐯 × 𝐁 +
𝒋

𝜎

Lorentz force:
𝒇𝐿 = 𝜌𝑐𝐄 + 𝐣 × 𝐁

Poynting Theorem:
𝜕𝑈

𝜕𝑡
+ ∇ ⋅ 𝐒 = −𝐄 ⋅ 𝐣, 𝑈 =

𝜖0𝐸2

2
+

𝐵2

2𝜇0
,

𝑺 =
1

𝜇0
𝐄 × 𝐁

Heating:

𝑄ohmic =
𝑗2

𝜎



MHD Assumptions

MHD considers phenomena with typical speeds (e.g. flow speeds, 
wave speeds) much less than the speed of light:

𝑣0 ≪ 𝑐

⇒ simplifications to Maxwell’s equations

[Note: we are also assuming a fully ionised hydrogen plasma]



Order of Magnitude Analysis

Assume 𝐵0, 𝐸0, 𝑙0, 𝑡0 to be typical values for magnetic and electric 
field strength, length scale and time scale.

⇒ 𝑣0 =
𝑙0

𝑡0
typical speed (≪ 𝑐)



Order of Magnitude Analysis

Assume 𝐵0, 𝐸0, 𝑙0, 𝑡0 to be typical values for magnetic and electric 
field strength, length scale and time scale.

⇒ 𝑣0 =
𝑙0

𝑡0
typical speed (≪ 𝑐)

Comparing magnitude of terms in Faraday’s law:

∇ × 𝐄 +
𝜕𝐁

𝜕𝑡
= 0 ⇒

𝐸0

𝑙0
~

𝐵0

𝑡0
⇒ 𝐸0~𝑣0𝐵0



Order of Magnitude Analysis

Now, comparing terms on LHS of Ampère’s law:

∇ × 𝐁 −
1

𝑐2

𝜕𝐄

𝜕𝑡
= 𝜇0𝐣:

1
𝑐2

𝜕𝐄
𝜕𝑡

∇ × 𝐁
~

𝐸0/(𝑡0𝑐2)

𝐵0/𝑙0
~

𝑣0

𝑐

2

≪ 1

𝐸0~𝑣0𝐵0



Order of Magnitude Analysis

Now, comparing terms on LHS of Ampère’s law:

∇ × 𝐁 −
1

𝑐2

𝜕𝐄

𝜕𝑡
= 𝜇0𝐣:

1
𝑐2

𝜕𝐄
𝜕𝑡

∇ × 𝐁
~

𝐸0/(𝑡0𝑐2)

𝐵0/𝑙0
~

𝑣0

𝑐

2

≪ 1

⇒ Neglect displacement current term.

MHD Ampère’s law:

𝐣 =
1

𝜇0
∇ × 𝐁

𝐸0~𝑣0𝐵0



Order of Magnitude Analysis

It can similarly be shown that  𝜌𝑐𝐄 ≪ |𝐣 × 𝐁|

⇒ Lorentz force density    𝒇𝐿 = 𝜌𝑐𝐄 + 𝐣 × 𝐁   reduces to 

MHD Lorentz force:
𝒇𝐿 = 𝐣 × 𝐁

 



Remarks

1. Simplifying Lorentz force density ⇒ we are effectively assuming 
𝜌𝑐 ≈ 0, which is called quasi-neutrality.

2. Assumption 𝑣0 ≪ 𝑐 excludes electromagnetic waves (can still get 
acoustic and magnetic waves – see talk by Chris Nelson at 2pm).

3. Since MHD uses a fluid description, 𝑙0 and 𝑡0 need to be large 
enough that local averages become meaningful:
i.  𝑙0 ≫  gyroradii of particles
ii.  𝑡0 ≫  gyroperiods of particles
iii.  Plasma density 𝜌 must be sufficiently high.



Fluid Equations

𝜕𝜌

𝜕𝑡
+ ∇ ⋅ 𝜌𝐯 = 0

𝜌
𝐷𝐯

𝐷𝑡
= −∇𝑝 + 𝜌𝐠,

𝐷𝑝

𝐷𝑡
= −𝛾𝑝∇ ⋅ 𝐯 + 𝛾 − 1 𝑄

EM equations

∇ ⋅ 𝐁 = 0, ∇ × 𝐁 −
1

𝑐2

𝜕𝐄

𝜕𝑡
= 𝜇0𝐣

∇ ⋅ 𝐄 =
𝜌𝑐

𝜖0
, ∇ × 𝐄 +

𝜕𝐁

𝜕𝑡
= 0

𝒇𝐿 = 𝜌𝑐𝐄 + 𝐣 × 𝐁

𝑬 = −𝐯 × 𝐁 +
𝒋

𝜎
, 𝑄ohmic =

𝑗2

𝜎

Bringing it all together



Fluid Equations

𝜕𝜌

𝜕𝑡
+ ∇ ⋅ 𝜌𝐯 = 0

𝜌
𝐷𝐯

𝐷𝑡
= −∇𝑝 + 𝜌𝐠,

𝐷𝑝

𝐷𝑡
= −𝛾𝑝∇ ⋅ 𝐯 + 𝛾 − 1 𝑄

EM equations

∇ ⋅ 𝐁 = 0, ∇ × 𝐁 −
1

𝑐2

𝜕𝐄

𝜕𝑡
= 𝜇0𝐣

∇ ⋅ 𝐄 =
𝜌𝑐

𝜖0
, ∇ × 𝐄 +

𝜕𝐁

𝜕𝑡
= 0

𝒇𝐿 = 𝜌𝑐𝐄 + 𝐣 × 𝐁

𝑬 = −𝐯 × 𝐁 +
𝒋

𝜎
, 𝑄ohmic =

𝑗2

𝜎

Bringing it all together



Fluid Equations

𝜕𝜌

𝜕𝑡
+ ∇ ⋅ 𝜌𝐯 = 0

𝜌
𝐷𝐯

𝐷𝑡
= −∇𝑝 + 𝜌𝐠,

𝐷𝑝

𝐷𝑡
= −𝛾𝑝∇ ⋅ 𝐯 + 𝛾 − 1 𝑄

EM equations

∇ ⋅ 𝐁 = 0, ∇ × 𝐁 = 𝜇0𝐣

∇ ⋅ 𝐄 =
𝜌𝑐

𝜖0
, ∇ × 𝐄 +

𝜕𝐁

𝜕𝑡
= 0

𝒇𝐿 = 𝐣 × 𝐁

𝑬 = −𝐯 × 𝐁 +
𝒋

𝜎
, 𝑄ohmic =

𝑗2

𝜎

Bringing it all together



Fluid Equations

𝜕𝜌

𝜕𝑡
+ ∇ ⋅ 𝜌𝐯 = 0

𝜌
𝐷𝐯

𝐷𝑡
= 𝐣 × 𝐁 − ∇𝑝 + 𝜌𝐠,

𝐷𝑝

𝐷𝑡
= −𝛾𝑝∇ ⋅ 𝐯 + 𝛾 − 1

𝑗2

𝜎

EM equations

∇ ⋅ 𝐁 = 0, ∇ × 𝐁 = 𝜇0𝐣

∇ ⋅ 𝐄 =
𝜌𝑐

𝜖0
, ∇ × 𝐄 +

𝜕𝐁

𝜕𝑡
= 0

𝑬 = −𝐯 × 𝐁 +
𝒋

𝜎

Bringing it all together



Mass continuity equation:
𝜕𝜌

𝜕𝑡
+ ∇ ⋅ 𝜌𝐯 = 0

Momentum equation:

𝜌
𝐷𝐯

𝐷𝑡
=

1

𝜇0
∇ × 𝐁 × 𝐁 − ∇𝑝 + 𝜌𝐠,

Energy equation:
𝐷𝑝

𝐷𝑡
= −𝛾𝑝∇ ⋅ 𝐯 + 𝛾 − 1 𝜂

|∇ × 𝐁|2

𝜇0

Induction equation:
𝜕𝐁

𝜕𝑡
= ∇ × 𝐯 × 𝐁 + 𝜂∇2𝐁

Resistive MHD Equations

4 PDEs in 4 primary 
variables: 𝐁, 𝐯, 𝜌, p

Obtain secondary 
variables 𝐄 and 𝐣 from 
MHD Ampère and Ohm’s 
laws. 

𝐣 =
1

𝜇0
∇ × 𝐁

𝜂 =
1

𝜇0𝜎

Also:
∇ ⋅ 𝐁 = 0

Magnetic diffusivity 
or resistivity



Induction Equation and 𝑅𝑚

Induction equation:
𝜕𝐁

𝜕𝑡
= ∇ × 𝐯 × 𝐁 + 𝜂∇2𝐁

Comparing magnitude of terms:
∇ × 𝐯 × 𝐁

𝜂∇2𝐁
~

𝑣0𝐵0/𝑙0

𝜂𝐵0/𝑙0
2 ~

𝑙0𝑣0

𝜂
=: 𝑅𝑚

𝑅𝑚  is the magnetic Reynolds number.

Large values common in solar corona (e.g. 108 − 1012).

advection diffusion



Ideal MHD
When 𝑅𝑚 ≫ 1 use ideal induction equation:

𝜕𝐁

𝜕𝑡
= ∇ × 𝐯 × 𝐁

Alfvén’s Theorem:
The magnetic flux through 
any surface co-moving 
with 𝐯 is conserved.

𝑑

𝑑𝑡
න

𝑆(𝑡)

𝐁 ⋅ 𝑑𝑆 = 0

Field line conservation:
Two fluid elements lying on the same 
magnetic field line always do so. 



Magnetic Forces
MHD momentum equation:

𝜌
𝑑𝐯

𝑑𝑡
+ 𝐯 ⋅ ∇ 𝐯 = 𝐣 × 𝐁 − ∇𝑝 + 𝜌𝐠



Magnetic Forces
MHD momentum equation:

𝜌
𝑑𝐯

𝑑𝑡
+ 𝐯 ⋅ ∇ 𝐯 = 𝐣 × 𝐁 − ∇𝑝 + 𝜌𝐠

Lorentz force term can be expanded as

𝐣 × 𝐁 =
1

𝜇0
∇ × 𝐁 × 𝐁 = −∇

𝐵2

2𝜇0
+

1

𝜇0
𝐁 ⋅ ∇ 𝐁

Magnetic 
pressure

Magnetic 
tension



Magnetic Forces
E.g. 𝐁 = 𝐵0 𝑦𝒆𝑥 + 𝑥𝒆𝑦

Magnetic pressure:

−∇
𝐵2

2𝜇0
= −

𝐵0
2

𝜇0
𝒆𝑟

Magnetic tension:
1

𝜇0
𝐁 ⋅ ∇ 𝐁 =

𝐵0
2

𝜇0
𝒆𝑟



Magnetic Reconnection

See Peter Wyper’s 
talk at 4pm

en.wikipedia.org/wiki/Magnetic_reconnection



Force-Free Fields
MHD momentum equation:

𝜌
𝑑𝐯

𝑑𝑡
+ 𝐯 ⋅ ∇ 𝐯 = 𝐣 × 𝐁 − ∇𝑝 + 𝜌𝐠



Force-Free Fields
MHD momentum equation:

𝜌
𝑑𝐯

𝑑𝑡
+ 𝐯 ⋅ ∇ 𝐯 = 𝐣 × 𝐁 − ∇𝑝 + 𝜌𝐠

Plasma beta is pressure ratio:

𝛽 ≪ 1 when plasma pressure ≪ magnetic pressure.

Seek static equilibria where
𝐣 × 𝐁 = 𝟎

⇒ Force balance between magnetic pressure and magnetic tension.

Effect of gravity often 
negligible compared 
to other forces

Consider long-lived 
structures: ~static 
equilibrium

𝛽 ≔
𝑝

𝐵2/2𝜇0



Force-Free Fields

𝐣 × 𝐁 = 𝟎 ⇔  ∇ × 𝐁 × 𝐁 = 𝟎 ⇔  ∇ × 𝐁 = 𝛼(𝐱)𝐁

Taking divergence:
𝐁 ⋅ ∇𝛼 = 0

i.e. 𝛼 is constant along magnetic field lines.

Cases:
 𝛼 = 0:    potential field
 𝛼 = const everywhere:  linear force-free field
 𝛼 = 𝛼(𝐱):    non-linear force-free field

sdo.gsfc.nasa.gov



Extensions
Many possible extensions, keeping fluid approximation:
• Generalised Ohm’s law: short lengthscales, terms related to 

electrons and ions.
• Different electron and ion temps.
• Anisotropic thermal conduction.
• Two-fluid plasma, e.g. including neutrals.
• Relativistic MHD
• …

Kinetic theory: abandon fluid approximation and track particle 
distribution function – or a hybrid approach.



Summary

Mass continuity equation:
𝜕𝜌

𝜕𝑡
+ ∇ ⋅ 𝜌𝐯 = 0

Momentum equation:

𝜌
𝐷𝐯

𝐷𝑡
=

1

𝜇0
∇ × 𝐁 × 𝐁 − ∇𝑝 + 𝜌𝐠,

Energy equation:
𝐷𝑝

𝐷𝑡
= −𝛾𝑝∇ ⋅ 𝐯 + 𝛾 − 1 𝜂

|∇ × 𝐁|2

𝜇0

Induction equation:
𝜕𝐁

𝜕𝑡
= ∇ × 𝐯 × 𝐁 + 𝜂∇2𝐁

4 PDEs in 4 primary 
variables: 𝐁, 𝐯, 𝜌, p

Obtain secondary 
variables 𝐄 and 𝐣 from 
MHD Ampère and Ohm’s 
laws. 

𝐣 =
1

𝜇0
∇ × 𝐁

𝜂 =
1

𝜇0𝜎

Also:
∇ ⋅ 𝐁 = 0

Magnetic diffusivity 
or resistivity



Summary
• Magnetohydrodynamics (MHD) describes interaction of an 

electrically conducting fluid with a magnetic field.

• Assumptions (resistive MHD):
o Fully ionized (single fluid) plasma
o 𝑣0 ≪ 𝑐
o 𝜌𝑐 ≈ 0 (quasi-neutrality)
o “Large enough” length and time scales (𝑙0 ≫  gyroradii, 𝑡0 ≫  

gyroperiods of particles, density 𝜌 sufficiently high).

• Ideal MHD when 𝑅𝑚: = 𝑙0𝑣0/𝜂 ≫ 1: field lines “frozen-in”.
• Force-free assumption valid when 𝛽 ≔ 𝑝/(𝐵2/2𝜇0) ≪ 1.



Thanks for listening! Any questions?

Dundee from Dundee Law

E-mail: 
kmeyer001@dundee.ac.uk

mailto:k.meyer@abertay.ac.uk
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